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Calculation of longitudinal magnetic fluctuations in iron by a 
Landau energy and force method 
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t: Theoretische Physik, ETH-Honggerter& CH 8093, Wrich, Switzerland 

Received 8 November 1990, in iinai tom 24 May 1991 

AbstrneL The concept of a Landau energy is used to calculate the energy of magnetic 
flucluations. This is used to obtain Uctitious magnetic fields akin 10 the Hellmann- 
Feynman forces used in phonon calculations. This generalized force method is applied 
to the spectrum of longitudinal magnetic fluctuations and spsi5c numerical mulls are 
presented for Fe. 

1. Introduction 

The present paper concerns the calculation of longitudinal magnetic fluctuations in 
itinerant electron magnets and presents specific numerical results for iron. Our 
method extends previous work and draws together two threads. Firstly the total 
energy of the fluctuation is cast in the form of a Landau energy i.e., the equivalent 
at T = 0 of the Landau free energy function in the theory of second order phase 
transitions. Secondly we use the Landau formulation to obtain fictitious magnetic 
fields akin to the Hellmann-Feynman forces used in the calculation of phonon spectra. 
Calculating these fields is far easier than evaluating the total energy directly. It is 
also more accurate by virtue of the usual argument which notes that the ‘forces’ 
are first order in the ‘displacements’ while the total energy is quadratic. We then 
use this generalized force method to calculate the spectrum of longitudinal magnetic 
fluctuations in iron using a realistic parametrization of the full band structure with 
proper consideration of the s and p electrons. These are known to be important in 
determining the low-energy properties of iron. 

As mentioned above we cast the energy in the form of a T = 0 Landau energy 
function, in our case expanding about the ferromagnetic ground state. In this way 
one can incorporate terms beyond second order in the amplitude of the Buctuation 
6m, which are, of course, given by the longitudinal susceptibility xII(q). In mod- 
em theories of magnetism there is considerable emphasis on modemode coupling 
which appears as higher order terms in the Landau free energy expansion. Such 
terms can be calculated directly from the comparison of a number of magnetization 
configurations. In principle, therefore, we insert into our computational sample of 
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iron some longitudinal fluctuations involving one or more components 6m, and eval- 
uate the total energy of the configuration, in much the same way as one currently 
does for phonon frequencies. This approach avoids the problem of basis set con- 
vergence in a perturbation evaluation of x(q). The perturbation expression inwlves 
two summations: one over the few ompied  bands and one over the infinite number 
of unoccupied bands complete with matrix elements between them. The first sum- 
mation poses no great problems but, in the case of phonon frequencies, the second 
is notorious for being badly convergent and renders the perturbation method all but 
unusable (Van Camp et ul 1983). We believe this could be a problem in the case of 
longitudinal magnetic fluctuations as well and prefer to avoid a perturbative treat- 
ment. Our approach instead focuses directly on the energies and magnetizations of 
particular configurations. 

This work also extends previous ideas on how the computations are both per- 
formed and analysed. In principle, one calculates the total energy of the selected 
configuration and indeed this is the quantity we are principally interested in. How- 
ever this is rather inefficient. For a phonon, in fact, one calculates the Hellmann- 
Feynman forces on the atoms i.e., the restoring forces for a given set of displacements 
and hence the phonon frequencies. This has the advantage that the restoring force 
depends linearly on the displacement amplitude (as long as the Iattir is small) while 
the total energy depcnds quadratically. A further advantage is that one can obtain 
far more information from a single calculation of the electronic structure. This is 
because the restoring forces result from the sum and the interaction of displacements 
belonging to all harmonics and this fact can be used to obtain information about 
a large region of the spectrum. By contrast a calculation of the total energy yields 
just one number pertaining to the particular configuration examined. What is the 
equivalent of this discussion for longitudinal magnetic fluctuations? 

For transvene fluctuations the general answer is already contained in a previ- 
ous publication (Small and Heine 1984): the magnetic couple acting on a magnetic 
moment mj in a non-equilibrium configuration is related to the quantity 
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hj = ${Aj - I m j } .  

Here Aj is the actual exchange splitting inserted into the calculation of the electronic 
structure, m. is the resultant magnetic moment on site j and I is the exchange 
interaction. $or transverse magnetic excitations, Aj and mj will generally differ in 
direction, giving rise to a couple on the moment mj. This difference in direction 
is expressed in a transferred moment i.e., a moment due to the polarization of the 
electron cloud in the environment. Under these couples the configuration of momens 
will precess. However, the system would be fully in static equilibrium if at each site 
we added a set of external magnetic fields which exactly cancelled the local differences 
between the spin-splitting and the exchange fields. This new set of fields hj is given 
by (1.1). 

In the present work we will consider all exchange splittings A, in the same 
z-direction but differing in magnitude from the value 

AFM = Imm (1.2) 

of the ferromagnetic ground state. In section 2 we shall discuss in detail how one 
formulates the energy of such a nonequilibrium structure correctly. It turns out that 
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to maintain a value of the magnetization greater (or smaller) than the ferromagnetic 
one, it is again necessaly to impose upon the system a set of fictitious magnetic fields. 
These are exactly the same fields as those we considered in (1.1) and can be related 
to the Landau free energy function for a longitudinal fluctuation. The crucial step 
consists of comparing the Landau energy for a non-equilibrium configuration in the 
absence of external fields with the total energy of an equilibrium configuration under 
the set of external fields { h j } .  

The model for the electronic structure and the computational method follows 
previous work (Luchini and Heine 1989). We believe it is important to include 
fully the effect of the s and p electrons in the calculations if one wants to obtain 
quantitative comparisons with experiment The magnetic properties, in particular the 
low-energy region of the spectrum, are notoriously sensitive to the details of the 
electronic structure. In particular we can quote the substantial differences which have 
been obtained in various calculations of the spin wave stiffness of iron (Wakoh et al 
1971, Wang et a1 1982, Muniz el a1 1985, Luchini and Heine 1989). We will mostly 
be interested in the longitudinal stiffness but there is every reason to expect that the 
same instability is present. In Fe hybridization between d and sp electrons seems to 
be of paramount importance in determining the low q behaviour. 

The calculations we have performed employ the recursion method (Haydock 1980) 
to calculate the local moments and, in some cases, the total energies of longitudinal 
magnetization waves. Though the essential magnetic interactions are confined to the 
relatively narrow d band, the large overall bandwidth which results from the inclusion 
of the sp electrons leads to extra numerical problems. These have been already been 
discussed in detail (Luchini and Heine 1989) and in section 4 we limit ourselves 
to sketching briefly their solution. However there are two important aspects of the 
configurations we are considering here which were absent in those which have been 
previously published. We will be examining fluctuations around the the ferromagnetic 
ground state and it is crucial that the self-consistent solution be identified with the 
minimum of the total energy not only in principle but also numerically. This is the 
magnetic analogue of a familiar problem encountered, for instance, in the relaxation 
of surfaces and defects, where it is crucial that the minimum of the total energy cor- 
respond to the solution that has no net forces on any site. In section 4 a formulation 
of the problem which ensures that this is always the case is discussed (Luchini and 
Nex 1990). 

The other important aspect is the fact that calculating the energy of these config- 
urations involves a consideration of the Coulomb terms in the Hamiltonian. There 
are two questions to be considered here. One is the approximation used to account 
for charge transfer or, in other words, the value of the Coulomb U that one assumes. 
The other is the precise formulation of the energy that includes such charge transfers. 
The latter problem turns out to be solved by the so-called bond energy of Sutton el 
a1 (1988). For the former problem, the most common approximations (U  = 0 and 
U = m) are used, and the results compared. 

The actual computational problem to which the Landau formulation will be ap- 
plied is the calculation of the energy spectrum of longitudinal fluctuations around the 
ferromagnetic ground state in iron. This was prompted by the success of a recent 
model of itinerant ferromagnets (Lonzarich and Billefer 1985) in which longitudi- 
nal fluctuations play an important role. The model of Lonzarich and 'hillefer was 
specifically designed for weak ferromagnets and its first applications were confined 
to Ni,AI and MnSi The principal innovation of this model is the inclusion of the 
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corrections to Stoner theoly arising from enhanced spin fluctuations. It takes into 
account both transverse and longitudinal modes and their quantum dynamics. Here 
we are interested in investigating its applicability to the case of stronger ferromagnets 
Like iron. In these t e r m  we wish ,to focus on the importance or otherwise of the 
contributions of the longitudinal modes to the thermodynamics. 

The model relies on four independent parameters, which can all, in principle, be 
determined either from electronic structure calculations or from fitting to experimen- 
tal data. The fust two parameters, a and b, arise from the Taylor expansion of the 
free energy as a function of magnetization: 

b 

The range of validity of the truncation of this expansion is the first issue our calcu- 
lations address. Figure 1 shows a plot of the total energy, as defined in section 2, 
against magnetization for our computations on iron. Here the magnetization varies 
only in magnitude and is the same over the whole cluster. The total energy is 01- 
culated ab inirio from the electronic structure. Indeed we verify that equation (1.3) 
applies remarkably well over a wide range of M .  It is comforting that this curve 
is very similar to that obtained earlier by Schwarz and Mohn (1984) using the fixed 
spin-moment method and a different band structure. 

M U Luchini et a1 

(1.3) F ( M )  = F(0) + ; M z  + 4 M 4  +, .. . 

"a Magnetization 

Figure 1. Plot of total energy as a function of magnetization. The poinu are joined as 
a guide to the eye. A 61 to the form EO + o M 2  + b M 4  as described in the text, is 
supimposed. 

The third parameter in the model is the sum of two separate contributions, the 
transverse and longitudinal stiffnesses, c,, and cL. These become equal to each 
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other in a cubic lattice for a weak ferromagnet in the limit of small M, which is 
not our case. In fact cI is directly related to the spin wave stiffness. This has 
already been calculated for the present parametrization of the electronic structure 
and found to be in excellent agreement with experiment (Luchini and Heine 1989). 
The longitudinal stiffness cII has not been calculated before for Fe. We will consider 
a set of configurations which have a sinusoidal modulation of the magnetization at a 
single q around the ferromagnetic ground state. The energy of such configurations 
should be proportional to c , , d M ;  so that, 

A calculation of the energies of such configurations would enable one to obtain cII 
directly. Finally the fourth parameter y is related to the differential scattering cross- 
section for inelastic neutron scattering. Its variation in a wide class of magnetic 
materials is quite small and since additionally T, depends on y114 its precise numer- 
ical value is not very important. 

In section 2 we consider the general problem of calculating the energy of a non- 
equilibrium structure and derive our Landau formulation of the energy of magnetic 
fluctuations on which we base the rest of our work Using it in section 3 we show how 
the sets of fictitious fields { h j }  and local moments {mi) can be used to obtain the 
total energy of an arbitrary fluctuation. In section 4 we briefly consider the problem 
of obtaining a self-consistent solution for the total energy which coincides with a 
configuration with net zero forces on all sites and, in more detail, the question of 
charge transfer. Finally section 5 contains our detailed numerical results. 

2. Definition of the Landau energy 

Tkaditionally electronic structure calculations of solids have been mainly concerned 
with ground state energies. Density functional theory in particular has been very 
successful at predicting ground state energies and has spawned a large variety of total 
energy methods. However here we are concerned with non-equilibrium configurations, 
in particular longitudinal magnetization fluctuations. The definition of the energy 
of such a fluctuation is a more general problem. Its resolution is therefore more 
important than the details of the particular calculation at hand. 

One approach that has been used in the past relies on the functional integral 
formulation (Hubbard 1979). However even in the static approximation this approach 
is plagued with ambiguities. These arise from the fact that it is possible to resolve the 
electron interactions, in our language the interactions of the exchange fields A,, into 
a quadratic form in more than one way. Different decompositions lead to different 
results after the static approximation is used (Hubbard 1979). The standard approach 
leads to a term A2/41 being added to the one-electron energy. This is different from 
our result and in the light of the ambiguities of the formalism we shall spell out our 
definition of the energy with a care that may appear at first sight as pedantic. 

It seems best to follow the idea of the Landau free energy in the context of the 
theory of second order phase transitions. In this field one also is concerned with 
defining the energy of non-equilibrium states. Specifically one considers an order 
parameter z, say, and asks what would be the value of the free energy of the system 
as a function o f t .  
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In order to state the ideas at their clearest and simplest we first consider a simple 
elastic system at T = 0 where one atom may have a displacement I. We will consider 
in detail the magnetic case later. The Landau energy U,(+) would be given by 

U,(Z) = U, + $AX2 (2.1) 

where X is the force constant. The problem consists in defining this operationally since 
simply postulating some non-zero I does not correspond by itself to any realisable 
state. The solution, as we hinted earlier, consists in applying a suitable external 
force F which brings the state into equilibrium. The energy of the whole system is  
then given by 

U(F) = U,(X) - FX 
1 = U, -f ~ X X '  - Fx. 

This has to be minimised with respect to x to give correctly 

F = AX. (23) 

Conversely, we can define U,(+) by 

U,(+) = U ( F )  - (-Fz). (2.4) 

This procedure affords the following interpretation. We apply a force F to give the 
required displacement x for an equilibrium system whose energy U( F) we can define 
and calculate by conventional methods, precisely because it is in equilibrium. Then 
U,(+) as defined by equation (2.4) is the internal energy of the system corrcsponding 
to that value of x i.e., U( F) with the potential energy -Fx of the external force 
subtracted out. This is really a restatement of equation (2.2~1). 

l iming now to our magnetic system, in practice, we postulate a set of exchange 
splittings Aj in the oneelectron equations. The electronic structure in the presence 
of the exchange fields Aj is then calculated and the local moments mj obtained. 
Let us start by specifying the Hamiltonian for the whole system. In this we follow 
the usual formulation of the problem discussed in detail in You and Heine (1982). 

HtolaI = Hbrad + Hint (2.5) 

where Hbnd is the purely tight-binding, non-magnetic hopping Hamiltonian between 
orbital 1 on site j and orbital 1' on site 3' and Zj is the magnetic moment operator. 
In practice this is solved by the one-electron Hamiltonian 

H1-clcc = Hband + Hex (2.8) 
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where A, is the exchange splitting (or A j / 2  the exchange potential) on atom j 
and uj is the vector of Pauli spin matrices (U= ,  by, uz)  on atom j. The procedure 
now consists in calculating the one-electron energies E,, of the oneelectron Hamilto- 
nian (28) and filling up the bands to a common Fermi level EF determined by the 
total number of electrons. 

Ib calculate the ground state we impose self-consistency on A, = I n j  where 
the local moment m, is properly given by 

(2.10) 
(2.11) 

with the respect to the Slater determinant of the oneelectron solutions Q. This 
procedure is usually considered as the Hartree-Fock solution to the original many- 
body problem. However this is not the only way of viewing it. A more modem 
interpretation based on density functional theory is discussed in Stollhoff er nl (1990) 
where (2.7) plays the r6le of the exchange and correlation energy functional. 

We next consider the equilibrium system in the presence of the external fields h, 
applied individually to the atoms j. 

(2.12) 

(2.13) 

hj = $(Aj - Im,). (2.14u) 

We assert that our solutions of H,.eleo combined into the whole Slater determinant 
Q, then give the correct self-consistent solution of the whole system in the set of 
external fields { h j ] .  The reason is that we'can turn equation (2.14~) around to write 
the total exchange splitting 

Aj = Imj + 2hj (2-14) 

as the sum of the internal ( Imj) and external (2hj)  contributions. For this to be 
true we now have to make Aj self consistent as in equation (2146). (The factor of 
two in equations (2.14a,6) arises from the fact that the energy of a moment in a field 
-h.u gives a full splitting of 2hu.) 

Conversely if we solve the oneelectron equations for some arbitrarily inserted 
splitting Aj, then the solutions (combined into a total Slater determinant Q)  give 
the correct self-consistent equilibrium state of the system in the set of external fields 
given by equation (214~). We can therefore define the corresponding Landau energy 
UL(mj) in analogy with equation (24) as follows 

U d m j )  = (Ql  H6,, IQ) - (Ql  Hexl IQ) (2.1%) 
= ('1 Hbirmd + 1') (2.15b) 

= ('1 Hband -k Hex IQ) -k (Ql Hint- (2.15~) 

( 2 . W )  
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where 
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is the sum of the one-electron eigenvalues e,, or in practice 

This form of the Landau energy is precisely what we require since it is a function of 
mj only: hj has disappeared as seen in equation (2.1517) and Aj is just an auxiliary 
variable which cancels out as seen in equation (2.15~). 

3. Expansion of the Landau energy 

The Landau energy is clearly a very convenient description of a system away from 
equilibrium. As discussed in section 1, the fields hj ,  contain information in addition 
to the total energy and we wish to make use of this UI calculating the Landau energy 
expression 

So how do we relate hj to UL(mj)? We consider the system in a set of external 
fields h, and write for its energy in analogy with (224) 

U = U L ( m j )  - E h j " .  

The equilibrium values of { m j )  are then determined by 

j 

= O  

01 

(3.3) 

These are the magnetic analogues of the Hellmann-Feynman forces 
By way of illustration of the general method let us examine the simplest case, that 

of a small uniform change in magnetization. We consider the Taylor expansion of the 
Landau energy about the ferromagnetic ground state 

a P 7 4  UL(mmn + 6m) = U,, + -6m' + --6mS + -6m + .  . . (3.4) 2! 3! 4! 

so that 

ao P Y 
am 2! 3! h = - = a6m + -6m' + -6m3 +. .. (3.5) 

From a particular calculation we obtain both a value of m and of h. To evaluate the 
three coefficients (a$,?) requires three calculations using (3.5). but four calculations 
using (3.4). Moreover the latter requires subtracting energies which differ by small 
quadratic terms in 6m. 
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In this work we will only be interested in longitudinal deviations from the fer- 
romagnetic ground state. We drop the vector nature of the local moments and just 
consider 

mj = mFM + 6mj (3-6) 
so that equation (3.3) becomes 

hi = (a) 
a6mj  Smr. far k#j' 

(3.7) 

We extend our treatment to arbitrary configurations by writing 

6ml = 6m, eiqj (34 
111 P 

where 6m, are complex Fourier coefficients We expand the Landau energy of the 
system comprising N atoms to thud order in 6ml and use equation (3.8) 

The mode-mode coupling coefficients, A,,, and B,,,,,,, must become equal to the 
coefficients of the energy expansion per atom for a uniform magnetization in the limit 
q - 0 i.e., a and p in equation (3.4). 

Consider a particular modulation with wave vector Q 

6m. 1 = 6m0 + 6m, + .-iQ't) + 6mz(ei2Q'1 + .-izW ) (3.10) 

where 6mo,6m, and 6m, are real. Our final result for the energy is 

U~(6mi)  = U,, + Aoo(6mo)' + 2All(6ml)2 + 2A2,(6m2)* 
+ Booo(6mo)3 + 6Bo,,6mo(6m,)2 + ~Bo , z~mo(6mz)z  
+ 6B211(6m,)z6m, + (3.11) 

where the multiplicities 2 and 6 arise from the different ways in which q, q' and q" 
can be chosen as 0, ~ z Q  and f2Q. 

We now turn to the evaluation of the fields hj defined by equations (3.7) using 
the general form for U ,  in (3.9). 

86mg,, + 6mg6m ,- 
a6ml (3.12) 



8656 

Using the inverse transform 
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(3.13) 

we can perform the differentiations and obtain for our configuration of wave veo 
tor Q (3.10) 

= 1(2AO06m0 + 2A,,(6m-le-iQ" + 6m 1 )  eiQ" N 

= 2A0o6mO + 4 A l , ( 6 m , ) 2 ~ ~ ~  Q1+4A,,(6m,)*cos2Ql 
+ ~ B o o o ( ~ ~ o ) ~  + 6B011(6m1)~ + 6B02,(6m,)2 
t 12Bol,6m06m, cos QE + 12B,1,6m,6m2cos Ql 
t ~2Bo,,6m06m,cos2Ql+6B,,l(6m,)2cos2Q1 + . .  . 

We compare with the Fourier expansion of the fields h, 

(3.14) 

(3.15) 

Under the same conditions of even configurations this yields our final equations 

ho = 2A006mo + 3B000(6m0)2 +6Boll(6m,)2 +6BO2,(6m,)* 

h ,  = 2A,,6mI + 6B0,,6m06m1 + 6B,,,6m16m, 

h ,  = 2A,,6m, + 6B0226m06m2 + 6B211(6m,)2 

where the fields h, for our configuration (3.10) are given by 

(3.16~) 

(3.166) 

(3.16~) 

hj = ho+h,2cosQ1+h22cos2Q1. (3.17) 

By a series of calculations on configurations with a range of 6m, one can fit the 
Fourier coefficients of the fields and those of the momenfs and obtain all m o d e  
mode coupling coefficients which can be substituted into equation (3.14) to give the 
Landau energy. 

4. Computational details 

The physical picture of itinerant electron magnetism on which our model is based is 
essentially the same as that of You and Heine (1982). This was improved by Luchini 
and Heine (1989) in the context of spiraling spin configurations in Fe who properly 
included the s and p electrons in a realistic band structure. Here we vely briefly 
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summarize the physical justification and numerical implementation of the model while 
referring the reader to the more exhaustive discussions in the aforementioned papers. 

We start with a non-magnetic band structure and then impose splittings &Ajl for 
each atomic orbital 1 and each site j in the one-electron equations. Thus electrons in 
the solid will polarize in the direction of *Ajk For the configurations we consider 
in this work i.e., longitudinal perturbations around the ferromagnetic ground state, all 
Ai will be parallel and in the ferromagnetic direction, though OUT model can be used 
to investigate arbitrary configurations of moments (Small and Heine 1984). We then 
solve the one-electron equations for Hamiltonian (2.5) to obtain the momen6 mj 
and insert them into (3.16) to define the fields hj.  , 

For the band structure we employ an spd tight-bmding parametrization of Wood’s 
(1962) APW non-magnetic calculation in terms of the usual tight-binding formulation 
(Slater and Koster 1954). This is known to give a good value for the spin wave 
stitfnes which is notoriously sensitive to the spd mixing (see Muniz et a1 (1985) for 
a k-space calculation and Luchini and Heine (1989) using recursion.) The crucial 
step in the calculation consists in deciding the form of the matrix I,,,. First principles 
spin-polarized calculations indicate that the spin-splitting of s- and plike states is very 
small compared to that of the d-states (Fritsche et al 1987). Moreover the calculations 
of Cooke et a1 (1980) indicated that there is very little difference between the splittings 
ford electrons of the t,, and eg symmeby. Hence we take (Luchini and Heine 1989) 

I,,, = I = 67 mRyd 
I,,, = 0 otherwise 

amongst the d electrons 

where the symbol 1 includes the azimuthal quantum number. This also provides us 
with the simplest computational procedure. We take Ad = 0.1427Ryd resulting in 
m = 2.125 pB for the total moment of the ferromagnetic ground state. 

The local densities of states are the central quantities of our calculation and are 
obtained using the recursion method (Haydock 1980). Computationally the crux of 
the problem lies in the shape of the density of states which consists of a set of narrow 
d band peaks with considerable weight on top of a broad, roughly featureless sp band 
with little weight. The total bandwidth is much larger than that of a pure d band 
(- 2Ryd vs - 0.45Ryd) so that to obtain adequate resolution in the crucial region 
of the d bands one needs a correspondingly larger number of levels in the continued 
fraction, specifically around 90. For reasons of accuracy and stability given in Luchffli 
and Heine (1989) where the computational aspect is discussed in greater detail, we 
analyse the recursion coefficients obtained from fairly large clusters (- 1000 atoms) 
using Gaussian quadrature (Nex 1978, 1984). 

Here we only want to discuss brielly the problem mentioned in section 1 of 
ensuring that computationally the minimum of the total energy corresponds to the 
self-consistent solution for the moment as it does theoretically. This does not turn out 
to be so in the quadrature approach unless one is careful about the various quantities 
computed. The problem lies particularly in the evaluation of the integral in 

EF Lw E n ( E )  dE.  ( 4 4  

Conventionally this has always been calculated using n ( E )  as obtained through 
quadrature but then we find that the minimum does not correspond to the self- 
consistent solution A = Im. In proving that the minimum of the total energy is 
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given by the self-consistency condition one has to perform the integration by parts 
of This is what causes the problem since the quadrature approximation does 
not guarantee to preserve the analytic relation between quantities related by differ- 
entiation (Nex 1978). The correct procedure is to perform the integration by pans 
analytically and to consider 

M U Luchini er a1 

EP 
Ul-.I-=..J_, n ( E ) d E  - J_r[J_: n(C)dE ' }dE .  (4.2) 

In this way both the energy and the moments are all evaluated in terms of the same 
quantity, the integrated density of states, 

E 
N ( E )  = 1- n(E') dE' (4.3) 

and bence no inconsistency can arise. This problem and its solution are fully analysed 
in Luchini and Nex (1990) where the best numerical implementation which we use in 
the next section is also given. This problem fully drives home the general point that 
if one requires an analyrical relation between various quantities then one must ensure 
that this analyticity is preserved in the numerical formulation to arbitrary precision. 

Let us now turn our attention to the problem of charge self-consistency. Since 
there are several sites which are not equivalent in a longitudinal fluctuation, the 
different Aj will cause electrons to want to flow between the sites. This charge 
Row will set up electrostatic potentials between the sites and the system reaches 
equilibrium when the electrostatic potentials balance the electrostatic energy of the 
charge flow. 

There are two problems to be considered here. The first concerns the value of 
the Coulomb U that one chooses to insert into the Hamiltonian. Three different 
approximations have been used. It has been argued that the most appropriate for 
metals is U = 00 essentially because the value of U is known to be larger than the 
exchange splitting A. In other words, perfect screening dominates. Every site has the 
Same number of electrons, charge transfer being inhibited by the infinite value of U. 
Alternatively one can insert a value of U derived from experiment and carry out a 
self-consistency between the charge transfers and the electrostatic potentials. The last 
approach is to set U = 0 and allow free charge flow. This is more appropriate in 
semiconductors. 

Calculations comparing U = 00 and U = 0 for magnetic configurations in Fe 
similar to the ones considered here (Hubbard 1979) showed a substantial difference 
in the total energy between the two approximations. However those calculations were 
carried out with a d-band-only model (in fact a one band model fitted to d-band 
parameters) and it is clear that on-site intra-band transfer can largely compensate for 
the different exchange splittings without leading to charge flow. 

The second problem concerns the correct formulation of the total energy in a 
system where charge transfer can occur. This has recently been carefully examined by 
Sutton et a1 (1988) who distinguished between the band energy and the bond energy. 
In their formulation these names are a natural choice. The precise procedure consists 
of deciding on a value of U, inserting a set of energy shifts ai  on each site i and 
then imposing self-consistency using 

ai = u c i  (4.4) 
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where c; is the amount of charge transfer on site i. 
Sutton et ol showed that in a tight-binding calculation, the correct energy to take 

is the bond energy. In particular they showed that, in such a calculation, the bond 
energy is m c t  to first order in the potential shifts. They defined the bond energy as 

and contrasted it with the conventional band energy 

The full derivation of this result is given in detail in their paper. Here we will just 
indicate how this result comes about and why it is relevant to our calculations. 

Let us consider the standard expression for the total energy of a solid in the 
Hartree approximation. This neglects the exchange and correlation term, which is 
treated properly in Sutton et al, but which does not affect the result. 

Let the equilibrium charge density be perturbed as follows 

P - + P + ~ P .  (4.8) 

The new one-electron energy is given by 

(4.9) 

for the wavefunctions Gn, so that the change in the one-electron energy to first order 
is 

(4.10~) 

= ~ n 6 ~ n .  (4.106) 

Let us now consider the double counting term which has the form, after the pertur- 
bation 

- 1 + 6 P n ) 2  2 
(4.11) 

so that the change in the energy due to double counting to first order in the density 
perturbation is given by 

- 72Pn6Pn. 1 (4.12) 

This exactly cancels, to first order, the change in the one-electron energy. 
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In tight-binding theory normally, one only explicitly computes the sum of the 
one-electron energies, the band energy (4.6) in this notation. The other terms in 
the total energy are usually absorbed in some semi-empirical potential Vea. In our 
calculations this is never written down because it is assumed constant and we only add 
the extra magnetic terms. However when doing calculations with defect relaxations 
this semi-empirical potential is very important and it is in this context that Sutton et 
a1 discuss the problem. 

The reason that this discussion applies to our problem is that the semi-empirical 
potential we assume is constant. This implies that the fist order cancellation of the 
single particle energy and the double counting term is not included in our formulation. 
This is clearly irrelevant when potential shifts are not present but becomes crucial 
when they are. Clearly calculating the band energy (4.6) will give the wrong answer. 
However if we calculate the bond energy (4.5) the exact cancellation will be included 
because we take out the shifts explicitly from the total energy. Since we are only 
interested in relative energies this is the correct procedure 

As mentioned earlier we will carry out the calculations using both the U = m 
and the U = 0 approximation. We will also calculate the total energy in a thud 
approximation called the local Fermi energy approximation. In this last approach we 
impose local charge neutrality but do not have an overall Fermi energy i.e., we allow 
the system to have little fluctuations in the local chemical potential. It differs from 
the U = m approximation by thc amount of overlap between the wavefunctions on 
neighbouring sites. If local charge neutrality is important we would expect the local 
Fermi energy procedure to give a good estimate for the energy of the system with 
U = 00. The last reason for calculating this energy is that the differences in the local 
Fermi energy from the Fermi energy of the reference ferromagnetic state give a very 
good estimate of the charge shifts required and substantially cut down the amount of 
self-consistency loops that one needs. 

Finally there are two last small difficulties concerning the charge self-consistency 
procedure which deserve mentioning. The first concerns the choice of the Fermi 
energy. Since the bond energy is clearly invariant with respect to the choice of the 
zero energy point the simplest procedure consists of fixing the Fermi energy at the 
ferromagnetic value and letting the charge shifts take care of themselves during the 
self-consistency. This is correct in principle but disastrous computationally. The 
system is not symmetrical in perturbations around the ferromagnetic energy and this 
leads during the self-consistency to a loss of total charge neutrality. This easily 
outweighs the energy of the magnetization fluctuations we seek The system does 
eventually converge to the correct answer but for the simplest case (q  = r /2 )  takes 
over fifteen iterations. This makes the evaluation of longer wavelength configurations 
impossible. 

The correct procedure is to evaluate the Fermi energy for the configuration at 
every step in the iteration. In this way total charge neutrality is ensured and because 
the bond energy is invariant under this procedure the same results as above are 
obtained. The charge self-consistency typically takes about three iterations. Since 
we are considering configurations with a given amplitude we must also any out a 
self-consistency in the moments. It is best to do these two separately, imposing self- 
consistency first on the magnetization configuration that is required and secondly on 
the potential shifts to obtain local charge neutrality, and then back to the moments 
until convergence on both sets of variables is achieved. At each step the variables 
that one is making self-consistent are kept constant. 5pically about ten sets of 
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recursions were required for a small wavelength configuration, diminishing to six at 
longer wavelengths 

The last important detail concerns the miwing of the old and new shifts during 
a self-consistency loop, required to obtain a stable convergence. As is well known 
in other typa of calculations, charge self-consistency is very unstable. It was found 
that only approximately 4% of the output shift was required to be added to the input 
for stability to be achieved. With larger miwings, the charge self-consistency diverged 
rapidly. 

5. The spectrum of longitudinal fluctuations 

The original motivation for the calculations in this section comes from the accuracy of 
the estimated Curie temperature of Fe (McMullan, private communication) obtained 
using the approach of Lonzarich and Billefer (1985). In this approach the finite 
temperature magnetic equation of state is assumed to be given by 

B = A ( T ) M  + bM3 

A ( T )  = a + 2b(mf) + 3b(mi) 

(54 

where 

(5.2) 

in which a and b are the zero temperature Landau parameters discussed earlier, while 
(m:) and (nt) represent the expectations of the transverse and longitudinal thermal 
magnetization fluctuations, respectively. The fluctuation dissipation theorem in the 
form, 

where U is a normalization volume, .(U) is the Bose function and U = 11 or L, is 
used to relate the expectations of the magnetization fluctuations to the dynamical 
susceptibility, X v ( q , w ) ,  which is assumed to have the form 

iw 

7" P 
x;'(q,w) = x;' + e , $  + - + .". (5.4) 

The Curie temperature, Tc, is now found from the condition that x-' = 0 = A(T,). 
Assuming both that the system is isotropic and the upper q cutoff can effectively be 
taken to infinity, the integral in equation (5.3) can be carried out analytically to give 

T, = 2 . 3 8 7 ~ M , 3 / ~ ( h y ) ~ / ~ / k ~  (5.5) 

where MO is the zero temperature moment given by m. In weakly ferromag- 
netic materials, such as MnSi and Ni3AI, where estimates of parameters c and 7 
are available, this formula is found to give a remarkably good description of the 
observed T, (Lonzarich and Billefer 1985). Moreover, the predicted Curie tempera- 
tures of Fe and Ni obtained using equation (5.5) and estimates of c and y turn out to 
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be in good agreement with experiment i.e., 900-1103K and 560-680K as compared 
with the experimental values of 1043 I< and 627K, respectively (McMullan 1989). 

The parameters c, and yV,  as introduced in equation (5.4). describe the spectral 
distribution of the magnetic fluctuations. In weakly magnetic, cubic metals it is 
reasonable to assume that these are isotropic. However, this is not obviously the case 
in strong ferromagnets, such as Fe, and the calculations in this section were carried 
out in part to test this. 

The total energies of the longitudinal fluctuations described below were calcu- 
lated both from the fits to the fields and moments as described in section 3 and by 
direct evaluation of the total energy using the new quadrature procedure described 
in section 4. Since one requires a number of runs with different sets of {mj} to 
evaluate the Landau energy, one can run the two methods at the same time. The 
final answers were found to be exactly the same. Lastly, all configurations were taken 
in the [Ool] direction. 

Figure 2 shows the total energy of longitudinal fluctuations for the Brillouin 
zone case (q  = T) in the three charge transfer approximations discussed to above. 
Explicitly this configuration consists of two sites, with magnetization mm -I- 6m 
and mm - 6m. As expected the total energy depends linearly on (6m)'. Indeed 
the accuracy with which this expectation is confirmed is almost surprising. 

M U Luchini ef a1 

( P i )  
FIgure 2. Energy of longitudinal Ruclualions at the Brillouin wne against amplitude 
squared of lhe magnelization wave. ?he expected linearity of the behaviour is Nidenl, 
even surprising in its accuracy. 

The behaviour of the energies for the different approximations for treating charge 
transfer also confirms our expectations. There is a marked difference between the 
U = M and the U = 0 approximations with the 'local Fermi energy' approximation 
being a good approximation to the U = 03 result showing that local charge neutrality 
is the most important contribution. 

There is one final detail which deserves mentioning. In working out the energy 
of an excitation of a given q and fixed amplitude one is effectively assuming an 
average over configurations with that amplitude and all possible phases. Though in 
the continuum limit these are obviously all the same, this is clearly not so when one 
has discrete sites. The configurations we choose are all symmetric in the distribution 
of sites above and below the ferromagnetic moment i.e., there is always one site at 
the maximum of the wave, one at the minimum and two at the ferromagnetic value. 



Longitudinal fluctuations in Fe 8663 

In this way we are always comparing configurations of the same phase. The only 
value of q for which we cannot do this is at the Brillouin zone. Here we average 
between the configuration with phase zero (the values of figure 2) and that of the 
one with phase n i.e., the ferromagnetic energy. 

Thii point is important when comparing energies of configurations of different 
wavelength as shown in figure 3. These are the results for a fixed amplitude of 0.1 pB. 
This represents a 4.5% deviation from the ferromagnetic state and yields energy 
changes larger than the numerical error involved but small enough that the nonlinear 
dependencies of the quantities does not dominate. 

20 - 

! . b o '  0.20 " 0.40 " 0.60 " 0.80 " 1.00 ' 
in vnits qB1 

Figure 3. Spectrum of longitudinal Auctuaiions of amplitude 0.1 p ~ .  The energy is taken 
relative to the ferromagnetic ground state. The result for the Brillouin zone configuration 
is adjusted for phase averaging as described in the text. 

Surprisingly the total energy for a configuration of non-zero q turns out to be 
substantially smaller than the q + 0 limit, before increasing again at the Brillouin 
zone. As expected the U = 0 approximation underestimates the energy of the 
configuration for the full range of q. There is only one point (q = n/4) where this is 
not true. It is probable though, that a better approximation for the average over the 
phases would yield better agreement since it greatly influences the result at q = 7r/2. 
The small q limit shows that all curves are proportional to 2 as we would expect. 
Hence even though the negative gradient is surprising there is no reason to suspect 
that the results are unphysical. 

These curves can be interpreted according to the following picture. If we assume 
that the interactions are completely local, the total energy for a fixed amplitude, 
would be mnstant as a function of q. We know that this is a very bad approximation 
but it should be reasonable in the q + 0 limit. Moreover one could argue that it 
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should also apply better at the Briliouin zone since the distortions are such that the 
local term dominates especially if there is a strong next-nearest neighbour coupling. 
In this case it is not surprising that the Brillouin zone energy and the q + 0 limit 
are quite similar. In between the non-low1 coupling drives the energy down which is 
strange but not unreasonable. 

This result has one possible implication for the long standing problem of short 
range order in Fe above T, (see Capellmann 1986 for a recent review). If the system 
favours short range order then this could well show up in the longitudinal as well 
as the transverse energies. One can think of this as a Fermi surface. effecc. If there 
are fairly flat regions connected by a given q then this would show up both in the 
longitudinal susceptibility and in the transverse. So the definite minimum around 
X = 4 is interesting in this context. If the same length scale were to apply to 
transverse excitations this would imply a nearest neighbour angle around 45O. 
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